- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Antonio, Monica (3)
-
Boakye, Mickey (3)
-
Carlos, Sonoma (3)
-
Chu, Ashley (3)
-
Echevarria, Andrea (3)
-
Fontao, Adrian (3)
-
Forbes, Holly (3)
-
Fricker, Mark (3)
-
Garcia, Lisa (3)
-
Kalantar, Diana (3)
-
Madhavan, Srinivasan (3)
-
McDonough, Samantha (3)
-
Niewiadomski, Izzi (3)
-
Rohde, James (3)
-
Scudder, Meg (3)
-
Sharma, Satvik (3)
-
To, Jason (3)
-
Vu, Bradley (3)
-
Yokota, Nicole (3)
-
Duarte, Miguel A (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Matos, Ilaine Silveira; Boakye, Mickey; Antonio, Monica; Carlos, Sonoma; Chu, Ashley; Duarte, Miguel A; Echevarria, Andrea; Fontao, Adrian; Garcia, Lisa; Huang, LeeAnn; et al (, Ecology)Abstract The dataset contains leaf venation architecture and functional traits for a phylogenetically diverse set of 122 plant species (including ferns, basal angiosperms, monocots, basal eudicots, asterids, and rosids) collected from the living collections of the University of California Botanical Garden at Berkeley (37.87° N, 122.23° W; CA, USA) from February to September 2021. The sampled species originated from all continents, except Antarctica, and are distributed in different growth forms (aquatic, herb, climbing, tree, shrub). The functional dataset comprises 31 traits (mechanical, hydraulic, anatomical, physiological, economical, and chemical) and describes six main leaf functional axes (hydraulic conductance, resistance and resilience to damages caused by drought and herbivory, mechanical support, and construction cost). It also describes how architecture features vary across venation networks. Our trait dataset is suitable for (1) functional and architectural characterization of plant species; (2) identification of venation architecture‐function trade‐offs; (3) investigation of evolutionary trends in leaf venation networks; and (4) mechanistic modeling of leaf function. Data are made available under the Open Data Commons Attribution License.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Matos, Ilaine_Silveira; Boakye, Mickey; Niewiadomski, Izzi; Antonio, Monica; Carlos, Sonoma; Johnson, Breanna_Carrillo; Chu, Ashley; Echevarria, Andrea; Fontao, Adrian; Garcia, Lisa; et al (, New Phytologist)Summary Variation in leaf venation network architecture may reflect trade‐offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture‐function trade‐offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade‐offs.Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade‐offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function.We found that generalized architecture‐function trade‐offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale.This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.more » « less
An official website of the United States government
